made by pyLODE 2.13.2

SRS Ontology: Geoprojection

Metadata

URI
http://www.opengis.net/ont/srs/geosrs/projection
Ontology RDF
RDF (turtle)

Table of Contents

  1. Classes
  2. Namespaces
  3. Legend

Overview

Pictures say 1,000 words
Figure 1: Ontology overview

Classes

A4 Projectionc # Classes

URI geosrs:A4Projection
Super-classes geosrs:LenticularProjectionc

Adams Projectionc # Classes

URI geosrs:AdamsProjection
Super-classes geosrs:ConformalProjectionc

Adams World In A Square II Projectionc # Classes

URI geosrs:AdamsWorldInASquareIIProjection
Super-classes geosrs:ConformalProjectionc

Adams World In A Square I Projectionc # Classes

URI geosrs:AdamsWorldInASquareIProjection
Super-classes geosrs:ConformalProjectionc

Airy Projectionc # Classes

URI geosrs:AiryProjection
Description

An azimuthal minimum error projection for the region within the small or great circle defined by an angular distance, from the tangency point of the plane

Super-classes geosrs:MinimumErrorProjectionc

Aitoff Oblique Projectionc # Classes

URI geosrs:AitoffObliqueProjection
Super-classes geosrs:PseudoAzimuthalProjectionc

Aitoff Projectionc # Classes

URI geosrs:AitoffProjection
Description

A modified azimuthal projection whose graticule takes the form of an ellipse

Super-classes geosrs:PseudoAzimuthalProjectionc

Albers Equal Area Projectionc # Classes

URI geosrs:AlbersEqualAreaProjection
Super-classes geosrs:EqualAreaProjectionc

American Polyconic Projectionc # Classes

URI geosrs:AmericanPolyconicProjection
Super-classes geosrs:PseudoConicalProjectionc

Apian Globular I Projectionc # Classes

URI geosrs:ApianGlobularIProjection
Super-classes geosrs:GlobularProjectionc

Apian II Projectionc # Classes

URI geosrs:ApianIIProjection
Super-classes geosrs:PseudoCylindricalProjectionc

Archaic Projectionc # Classes

URI geosrs:ArchaicProjection
Sub-classes geosrs:PtolemyIProjectionc

Arden Close Projectionc # Classes

URI geosrs:ArdenCloseProjection
Super-classes geosrs:CylindricalProjectionc

Armadillo Projectionc # Classes

URI geosrs:ArmadilloProjection
Super-classes geosrs:CompromiseProjectionc

Atlantis Projectionc # Classes

URI geosrs:AtlantisProjection
Super-classes geosrs:PseudoCylindricalProjectionc

August Epicycloidal Projectionc # Classes

URI geosrs:AugustEpicycloidalProjection
Description

A projection in which every angle between two curves that crosss each other on a celestical body is preserved in the image of the projection

Super-classes geosrs:ConformalProjectionc

Autha Graph Projectionc # Classes

URI geosrs:AuthaGraphProjection
Super-classes geosrs:PolyhedralProjectionc

Azimutal Equal Area Projectionc # Classes

URI geosrs:AzimuthalEqualAreaProjection
Description

In this projection, the radial scale is adjusted so that areas are everywhere correctly represented. The only consideration, therefore, is that areas shall be strictly comparable over the entire projection. In the process of adjustment, shape and distance may both become distorded. (ref. George P. Kellaway, Map projections. Methuen &co Ltd. London, UK, 1970.)

Super-classes geosrs:EqualAreaProjectionc

Azimuthal Equidistant Projectionc # Classes

URI geosrs:AzimuthalEquidistantProjection
Description

In this projection, the radial scale is adjusted so that every point on the projection lies at its correct distance from the center of the plane. The scale along the meridians that is, radially from the center, is everywhere correct and it is in respect of this propperty that the projection is said to be equidistant.(ref. George P. Kellaway, Map projections. Methuen &co Ltd. London, UK, 1970.)

Super-classes geosrs:EquidistantProjectionc

Azimuthal Projectionc # Classes

URI geosrs:AzimuthalProjection
Description

In this class of projection, the parallels and the meridians of the ‘generating’ globe are projected geometrically from a point on to a plane, which is tangential to the globe, and at right angles to the line joining the point of origin to the point of contact. (ref. George P. Kellaway, Map projections. Methuen &co Ltd. London, UK, 1970.)

Sub-classes geosrs:GinzburgIProjectionc
geosrs:BreusingGeometricProjectionc
geosrs:GnomonicProjectionc
geosrs:JamesAzimuthalProjectionc
geosrs:GinzburgIIProjectionc
geosrs:BreusingHarmonicProjectionc

BSAM Cylindrical Projectionc # Classes

URI geosrs:BSAMCylindricalProjection
Description

The Bolshoi Sovietskii Atlas Mira Projection is a perspective projection from a point on the Equator opposite a given meridian onto a cylinder secant at the 30º parallels. (Ref: https://www.mathworks.com/help/map/bsam.html)

Super-classes geosrs:CylindricalStereographicProjectionc

Bacon Globular Projectionc # Classes

URI geosrs:BaconGlobularProjection
Super-classes geosrs:GlobularProjectionc

Baker Dinomic Projectionc # Classes

URI geosrs:BakerDinomicProjection
Super-classes geosrs:CompromiseProjectionc

Balthasart Projectionc # Classes

URI geosrs:BalthasartProjection
Description

A cylindrical equal-area projection that uses a standard parallel of phi_s=50 degrees

Super-classes geosrs:CylindricalEqualAreac

Baranyi III Projectionc # Classes

URI geosrs:BaranyiIIIProjection
Super-classes geosrs:PseudoCylindricalProjectionc

Baranyi II Projectionc # Classes

URI geosrs:BaranyiIIProjection
Super-classes geosrs:PseudoCylindricalProjectionc

Baranyi I Projectionc # Classes

URI geosrs:BaranyiIProjection
Super-classes geosrs:PseudoCylindricalProjectionc

Baranyi IV Projectionc # Classes

URI geosrs:BaranyiIVProjection
Super-classes geosrs:PseudoCylindricalProjectionc

Bartholomew Projectionc # Classes

URI geosrs:BartholomewProjection
Super-classes geosrs:WinkelTripelProjectionc

Behrmann Projectionc # Classes

URI geosrs:BehrmannProjection
Description

A cylindrical equal-area map projection with standard parallels set at 30° north and south

Super-classes geosrs:CylindricalEqualAreac

Berghaus Star Projectionc # Classes

URI geosrs:BerghausStarProjection
Super-classes geosrs:EquidistantProjectionc

Bertin Projectionc # Classes

URI geosrs:BertinProjection
Super-classes geosrs:CompromiseProjectionc

Bipolar Oblique Conic Conformal Projectionc # Classes

URI geosrs:BipolarObliqueConicConformalProjection
Super-classes geosrs:ConicalProjectionc

Boggs Eumorphic Projectionc # Classes

URI geosrs:BoggsEumorphicProjection
Super-classes geosrs:PseudoCylindricalProjectionc

Bonne Projectionc # Classes

URI geosrs:BonneProjection
Super-classes geosrs:PseudoConicalProjectionc
Sub-classes geosrs:StabiusWernerIIProjectionc

Bottomley Projectionc # Classes

URI geosrs:BottomleyProjection
Super-classes geosrs:PseudoConicalProjectionc

Braun Perspective Projectionc # Classes

URI geosrs:BraunPerspectiveProjection
Super-classes geosrs:CylindricalProjectionc

Braun Stereographic Projectionc # Classes

URI geosrs:BraunStereographicProjection
Super-classes geosrs:CylindricalStereographicProjectionc

Breusing Geometric Projectionc # Classes

URI geosrs:BreusingGeometricProjection
Super-classes geosrs:AzimuthalProjectionc

Breusing Harmonic Projectionc # Classes

URI geosrs:BreusingHarmonicProjection
Super-classes geosrs:AzimuthalProjectionc

Briesemeister Projectionc # Classes

URI geosrs:BriesemeisterProjection
Super-classes geosrs:LenticularProjectionc

Bromley Projectionc # Classes

URI geosrs:BromleyProjection
Super-classes geosrs:PseudoCylindricalProjectionc

Cabot Projectionc # Classes

URI geosrs:CabotProjection
Super-classes geosrs:PseudoCylindricalProjectionc

Cahill Keyes Projectionc # Classes

URI geosrs:CahillKeyesProjection
Super-classes geosrs:PolyhedralProjectionc

Cassini Projectionc # Classes

URI geosrs:CassiniProjection
Description

A map projection first described in an approximate form by César-François Cassini de Thury in 1745. It is an example of the transverse application of the Plate Carrée projection ; that is the cylinder may be regarded as touching the globe along the great circle formed by two selected opposite meridians. (ref. George P. Kellaway, Map projections. Methuen &co Ltd. London, UK, 1970.)

Super-classes geosrs:EquidistantProjectionc

Central Conic Projectionc # Classes

URI geosrs:CentralConicProjection
Super-classes geosrs:ConicalProjectionc

Central Cylindrical Projectionc # Classes

URI geosrs:CentralCylindricalProjection
Description

The central cylindrical projection is a perspective cylindrical map projection. It corresponds to projecting the Earth's surface onto a cylinder tangent to the equator as if from a light source at Earth's center. The cylinder is then cut along one of the projected meridians and unrolled into a flat map. (Ref: https://en.wikipedia.org/wiki/Central_cylindrical_projection)

Super-classes geosrs:PerspectiveProjectionc

Chamberlin Trimetric Projectionc # Classes

URI geosrs:ChamberlinTrimetricProjection
Super-classes geosrs:CompromiseProjectionc

Ciric I Projectionc # Classes

URI geosrs:CiricIProjection
Super-classes geosrs:LenticularProjectionc

Collignon Butterfly Projectionc # Classes

URI geosrs:CollignonButterflyProjection
Super-classes geosrs:PolyhedralProjectionc

Collignon Projectionc # Classes

URI geosrs:CollignonProjection
Description

An equal-area pseudocylindrical projection that maps the sphere onto a triangle or diamond

Super-classes geosrs:PseudoCylindricalProjectionc

Colombia Urban Projectionc # Classes

URI geosrs:ColombiaUrbanProjection

Compact Miller Projectionc # Classes

URI geosrs:CompactMillerProjection
Super-classes geosrs:CylindricalProjectionc

Compromise Projectionc # Classes

URI geosrs:CompromiseProjection
Description

Compromise projections give up the idea of perfectly preserving metric properties, seeking instead to strike a balance between distortions, or to simply make things look right. (Ref: https://en.wikipedia.org/wiki/Map_projection)

Sub-classes geosrs:PetermannStarProjectionc
geosrs:BertinProjectionc
geosrs:LarriveeProjectionc
geosrs:WinkelIProjectionc
geosrs:SpilhausOceanicProjectionc
geosrs:ChamberlinTrimetricProjectionc
geosrs:FairgrieveProjectionc
geosrs:WinkelIIProjectionc
geosrs:WinkelSnyderProjectionc
geosrs:DenoyerSemiEllipticalProjectionc
geosrs:VanDerGrintenIIIProjectionc
geosrs:ArmadilloProjectionc
geosrs:BakerDinomicProjectionc

Conformal Projectionc # Classes

URI geosrs:ConformalProjection
Description

In cartography, a conformal map projection is one in which every angle between two curves that cross each other on Earth is preserved in the image of the projection. (Ref: https://en.wikipedia.org/wiki/Conformal_map_projection)

Sub-classes geosrs:GringortenProjectionc
geosrs:AugustEpicycloidalProjectionc
geosrs:AdamsWorldInASquareIProjectionc
geosrs:EisenlohrProjectionc
geosrs:AdamsWorldInASquareIIProjectionc
geosrs:AdamsProjectionc
geosrs:GS50Projectionc
geosrs:StereographicProjectionc
geosrs:PeirceQuincuncialProjectionc
geosrs:CoxConformalProjectionc

Conical Projectionc # Classes

URI geosrs:ConicalProjection
Description

Projections of this class can be visualized as made on a cone, which is afterwards opened out flat. (ref. George P. Kellaway, Map projections. Methuen &co Ltd. London, UK, 1970.)

Sub-classes geosrs:SchjerningIProjectionc
geosrs:CentralConicProjectionc
geosrs:MurdochIProjectionc
geosrs:LambertConformalConicProjectionc
geosrs:HerschelConformalConicProjectionc
geosrs:Krovakc
geosrs:VitkovskyIProjectionc
geosrs:MurdochIIProjectionc
geosrs:BipolarObliqueConicConformalProjectionc
geosrs:MurdochIIIProjectionc

Cordiform Projectionc # Classes

URI geosrs:CordiformProjection

Cox Conformal Projectionc # Classes

URI geosrs:CoxConformalProjection
Super-classes geosrs:ConformalProjectionc

Craig Retroazimuthal Projectionc # Classes

URI geosrs:CraigRetroazimuthalProjection
Super-classes geosrs:RetroazimuthalProjectionc

Craster Parabolic Projectionc # Classes

URI geosrs:CrasterParabolicProjection
Super-classes geosrs:PseudoCylindricalProjectionc

Cupola Projectionc # Classes

URI geosrs:CupolaProjection
Super-classes geosrs:LenticularProjectionc

Cylindrical Equal Area Projectionc # Classes

URI geosrs:CylindricalEqualArea
Description

A map projection which has a cylindrical projection surface and where two areas in the map have the same relative size compared to their size on the sphere. (Ref: https://en.wikipedia.org/wiki/Cylindrical_equal-area_projection)

Super-classes geosrs:EqualAreaProjectionc
Sub-classes geosrs:LambertCylindricalEqualAreaProjectionc
geosrs:ObliqueCylindricalEqualAreaProjectionc
geosrs:ToblerWorldInASquareProjectionc
geosrs:BehrmannProjectionc
geosrs:SmythEqualSurfaceProjectionc
geosrs:TransverseCylindricalEqualAreaProjectionc
geosrs:BalthasartProjectionc

Cylindrical Projectionc # Classes

URI geosrs:CylindricalProjection
Description

Projections in this class can be visualized as made in a cynlinder, which is the cut along a convenient line parallel to the axis, and opened out flat. (ref. George P. Kellaway, Map projections. Methuen &co Ltd. London, UK, 1970. See also : https://en.wikipedia.org/wiki/Map_projection#Normal_cylindrical_projection)

Sub-classes geosrs:CompactMillerProjectionc
geosrs:WebMercatorProjectionc
geosrs:CylindricalStereographicProjectionc
geosrs:ArdenCloseProjectionc
geosrs:BraunPerspectiveProjectionc
geosrs:ToblerCylindricalIIProjectionc
geosrs:PattersonCylindricalProjectionc
geosrs:ToblerCylindricalIProjectionc
geosrs:MillerProjectionc
geosrs:MercatorProjectionc
geosrs:PavlovProjectionc
geosrs:LabordeProjectionc
geosrs:UrmayevIIIProjectionc
geosrs:KarchenkoShabanovaProjectionc

Cylindrical Stereographic Projectionc # Classes

URI geosrs:CylindricalStereographicProjection
Description

The stereographic projections are perspective projections, projecting the sphere onto a cylinder in the direction of the antipodal point on the equator. The cylinder crosses the sphere at two standard parallels, equidistant from the equator. (Ref : https://www.pygmt.org/v0.4.0/projections/cyl/cyl_stereographic.html)

Super-classes geosrs:CylindricalProjectionc
Sub-classes geosrs:BSAMCylindricalProjectionc
geosrs:BraunStereographicProjectionc

Deakin Minimum Error Projectionc # Classes

URI geosrs:DeakinMinimumErrorProjection
Super-classes geosrs:PseudoCylindricalProjectionc

Dedistort Projectionc # Classes

URI geosrs:DedistortProjection
Super-classes geosrs:LenticularProjectionc

Denoyer Semi Elliptical Projectionc # Classes

URI geosrs:DenoyerSemiEllipticalProjection
Super-classes geosrs:CompromiseProjectionc

Dietrich Kitada Projectionc # Classes

URI geosrs:DietrichKitadaProjection
Super-classes geosrs:LenticularProjectionc

Dodecahedral Projectionc # Classes

URI geosrs:DodecahedralProjection
Super-classes geosrs:PolyhedralProjectionc

Dymaxion Projectionc # Classes

URI geosrs:DymaxionProjection
Super-classes geosrs:PolyhedralProjectionc

Eckert 1 Projectionc # Classes

URI geosrs:Eckert1Projection
Super-classes geosrs:PseudoCylindricalProjectionc

Eckert 2 Projectionc # Classes

URI geosrs:Eckert2Projection
Super-classes geosrs:PseudoCylindricalProjectionc

Eckert 3 Projectionc # Classes

URI geosrs:Eckert3Projection
Super-classes geosrs:PseudoCylindricalProjectionc

Eckert 4 Projectionc # Classes

URI geosrs:Eckert4Projection
Super-classes geosrs:PseudoCylindricalProjectionc

Eckert 5 Projectionc # Classes

URI geosrs:Eckert5Projection
Super-classes geosrs:PseudoCylindricalProjectionc

Eckert 6 Projectionc # Classes

URI geosrs:Eckert6Projection
Super-classes geosrs:PseudoCylindricalProjectionc

Eisenlohr Projectionc # Classes

URI geosrs:EisenlohrProjection
Super-classes geosrs:ConformalProjectionc

Equal Area Projectionc # Classes

URI geosrs:EqualAreaProjection
Description

In cartography, an equivalent, authalic, or equal-area projection is a map projection that preserves relative area measure between any and all map regions. (Ref : https://en.wikipedia.org/wiki/Equal-area_projection)

Sub-classes geosrs:LambertAzimuthalEqualAreac
geosrs:HoboDyerProjectionc
geosrs:GringortenProjectionc
geosrs:MollweideProjectionc
geosrs:CylindricalEqualAreac
geosrs:TrystanEdwardsProjectionc
geosrs:GallPetersProjectionc
geosrs:AlbersEqualAreaProjectionc
geosrs:AzimuthalEqualAreaProjectionc
geosrs:WiechelProjectionc

Equal Earth Projectionc # Classes

URI geosrs:EqualEarthProjection
Super-classes geosrs:PseudoCylindricalProjectionc

Equally-Spaced Parallels Projectionc # Classes

URI geosrs:EquallySpacedParallelsProjection

Equidistant Conic Projectionc # Classes

URI geosrs:EquidistantConicProjection
Super-classes geosrs:EquidistantProjectionc

Equidistant Cylindrical Projectionc # Classes

URI geosrs:EquidistantCylindricalProjection
Description

The equidistant cylindrical projection maps meridians to vertical straight lines of constant spacing (for meridional intervals of constant spacing), and circles of latitude to horizontal straight lines of constant spacing (for constant intervals of parallels). (Ref : https://en.wikipedia.org/wiki/Equirectangular_projection)

Super-classes geosrs:EquidistantProjectionc

Equidistant Projectionc # Classes

URI geosrs:EquidistantProjection
Description

An equidistant projection is a map projection that maintains scale along one or more lines, or from one or two points to all other points on the map. The distance between the center point of the map and any other point is correct with an equidistant projection. (Ref: https://www.caliper.com/glossary/what-is-an-equidistant-projection.htm?srsltid=AfmBOorB2RI2pbhjDnDz5ltbPX2wqDRoNRgMe1Gbe99tc8W9j-zuyV2E)

Sub-classes geosrs:EquidistantConicProjectionc
geosrs:BerghausStarProjectionc
geosrs:ObliquePlateCarreeProjectionc
geosrs:CassiniProjectionc
geosrs:EquidistantCylindricalProjectionc
geosrs:TwoPointEquidistantProjectionc
geosrs:EquirectangularProjectionc
geosrs:PlateCarreeProjectionc
geosrs:AzimuthalEquidistantProjectionc

Equirectangular Projectionc # Classes

URI geosrs:EquirectangularProjection
Description

The equirectangular projection maps meridians to vertical straight lines of constant spacing (for meridional intervals of constant spacing), and circles of latitude to horizontal straight lines of constant spacing (for constant intervals of parallels). (Ref: https://en.wikipedia.org/wiki/Equirectangular_projection)

Super-classes geosrs:EquidistantProjectionc

Fahey Projectionc # Classes

URI geosrs:FaheyProjection
Super-classes geosrs:PseudoCylindricalProjectionc

Fairgrieve Projectionc # Classes

URI geosrs:FairgrieveProjection
Super-classes geosrs:CompromiseProjectionc

Foucaut Projectionc # Classes

URI geosrs:FoucautProjection
Super-classes geosrs:PseudoCylindricalProjectionc

Foucaut Sinusoidal Projectionc # Classes

URI geosrs:FoucautSinusoidalProjection
Super-classes geosrs:PseudoCylindricalProjectionc

Fournier Globular I Projectionc # Classes

URI geosrs:FournierGlobularIProjection
Super-classes geosrs:GlobularProjectionc

Fournier II Projectionc # Classes

URI geosrs:FournierIIProjection
Super-classes geosrs:PseudoCylindricalProjectionc

Francula III Projectionc # Classes

URI geosrs:FranculaIIIProjection
Super-classes geosrs:LenticularProjectionc

Francula IV Projectionc # Classes

URI geosrs:FranculaIVProjection
Super-classes geosrs:LenticularProjectionc

Francula IX Projectionc # Classes

URI geosrs:FranculaIXProjection
Super-classes geosrs:LenticularProjectionc

Francula VIII Projectionc # Classes

URI geosrs:FranculaVIIIProjection
Super-classes geosrs:LenticularProjectionc

Francula V Projectionc # Classes

URI geosrs:FranculaVProjection
Super-classes geosrs:LenticularProjectionc

Francula XIII Projectionc # Classes

URI geosrs:FranculaXIIIProjection
Super-classes geosrs:LenticularProjectionc

Francula XII Projectionc # Classes

URI geosrs:FranculaXIIProjection
Super-classes geosrs:LenticularProjectionc

Francula XIV Projectionc # Classes

URI geosrs:FranculaXIVProjection
Super-classes geosrs:LenticularProjectionc

GS50 Projectionc # Classes

URI geosrs:GS50Projection
Super-classes geosrs:ConformalProjectionc

Gall Isographic Projectionc # Classes

URI geosrs:GallIsographicProjection

Gall Peters Projectionc # Classes

URI geosrs:GallPetersProjection
Super-classes geosrs:EqualAreaProjectionc

Gall Stereographic Projectionc # Classes

URI geosrs:GallStereographicProjection
Description

In this projection the cylinder may be regarded as intersecting the globe along the parallels of latitude 45°N and 45°S. The projection is the made stereographically, which represent a section through the center of the globe at richt angles to the plane of the equator. (ref. George P. Kellaway, Map projections. Methuen &co Ltd. London, UK, 1970.) (See also : https://en.wikipedia.org/wiki/Gall_stereographic_projection)

Super-classes geosrs:StereographicProjectionc
Sub-classes geosrs:KamenetskiyIProjectionc

Gauss Krueger Projectionc # Classes

URI geosrs:GaussKruegerProjection
Super-classes geosrs:TransverseMercatorProjectionc

General Vertical Perspective Projectionc # Classes

URI geosrs:GeneralVerticalPerspectiveProjection
Super-classes geosrs:PerspectiveProjectionc

Gilbert Two World Perspective Projectionc # Classes

URI geosrs:GilbertTwoWorldPerspectiveProjection
Super-classes geosrs:PerspectiveProjectionc

Gingery Projectionc # Classes

URI geosrs:GingeryProjection

Ginzburg II Projectionc # Classes

URI geosrs:GinzburgIIProjection
Super-classes geosrs:AzimuthalProjectionc

Ginzburg I Projectionc # Classes

URI geosrs:GinzburgIProjection
Super-classes geosrs:AzimuthalProjectionc

Ginzburg IV Projectionc # Classes

URI geosrs:GinzburgIVProjection
Super-classes geosrs:PolyconicProjectionc

Ginzburg IX Projectionc # Classes

URI geosrs:GinzburgIXProjection
Super-classes geosrs:PolyconicProjectionc

Ginzburg VIII Projectionc # Classes

URI geosrs:GinzburgVIIIProjection
Super-classes geosrs:PseudoCylindricalProjectionc

Ginzburg VI Projectionc # Classes

URI geosrs:GinzburgVIProjection
Super-classes geosrs:PolyconicProjectionc

Ginzburg V Projectionc # Classes

URI geosrs:GinzburgVProjection
Super-classes geosrs:PolyconicProjectionc

Globular Projectionc # Classes

URI geosrs:GlobularProjection
Sub-classes geosrs:FournierGlobularIProjectionc
geosrs:ApianGlobularIProjectionc
geosrs:BaconGlobularProjectionc

Gnomonic Butterfly Projectionc # Classes

URI geosrs:GnomonicButterflyProjection
Super-classes geosrs:PolyhedralProjectionc

Gnomonic Cubed Sphere Projectionc # Classes

URI geosrs:GnomonicCubedSphereProjection
Super-classes geosrs:PolyhedralProjectionc

Gnomonic Icosahedron Projectionc # Classes

URI geosrs:GnomonicIcosahedronProjection
Super-classes geosrs:PolyhedralProjectionc

Stereographic Projectionc # Classes

URI geosrs:GnomonicProjection
Description

The projection is made from the center of the globe onto a plane which is tangential to the generating globe. When the plane is tangential at either of the two poles, the resulting projection is referred to as the polar case ; when the plane is tangential at some point on the equator, as the equatorail case ; when the plane is tangential elsewhere, as the oblique case. (ref. George P. Kellaway, Map projections. Methuen &co Ltd. London, UK, 1970.)

Super-classes geosrs:AzimuthalProjectionc

Goode Homolosine Projectionc # Classes

URI geosrs:GoodeHomolosineProjection
Super-classes geosrs:PseudoCylindricalProjectionc

Gott-Wagner Projectionc # Classes

URI geosrs:GottWagnerProjection
Super-classes geosrs:PolyconicProjectionc

Gringorten Projectionc # Classes

URI geosrs:GringortenProjection
Super-classes geosrs:ConformalProjectionc
geosrs:EqualAreaProjectionc

Gringorten Quincuncial Projectionc # Classes

URI geosrs:GringortenQuincuncialProjection

Guyou Projectionc # Classes

URI geosrs:GuyouProjection
Super-classes geosrs:PolyhedralProjectionc

HEALPix Projectionc # Classes

URI geosrs:HEALPixProjection
Super-classes geosrs:PseudoCylindricalProjectionc

Hammer Projectionc # Classes

URI geosrs:HammerProjection
Super-classes geosrs:PseudoAzimuthalProjectionc

Hammer Retroazimuthal Projectionc # Classes

URI geosrs:HammerRetroazimuthalProjection
Super-classes geosrs:RetroazimuthalProjectionc

Hamusoidal Projectionc # Classes

URI geosrs:HamusoidalProjection
Super-classes geosrs:LenticularProjectionc

Hatano Asymmetrical Equalarea Projectionc # Classes

URI geosrs:HatanoAsymmetricalEqualAreaProjection
Description

This is an equal-area projection. Scale is true along 40º42'N and 38º27'S, and is constant along any parallel but generally not between pairs of parallels equidistant from the Equator. It is free of distortion only along the central meridian at 40º42'N and 38º27'S. (Ref: https://www.mathworks.com/help/map/hatano.html)

Super-classes geosrs:PseudoCylindricalProjectionc

Herschel Conformal Conic Projectionc # Classes

URI geosrs:HerschelConformalConicProjection
Super-classes geosrs:ConicalProjectionc

Hill Eucyclic Projectionc # Classes

URI geosrs:HillEucyclicProjection
Super-classes geosrs:PolyconicProjectionc

Hobo Dyer Projectionc # Classes

URI geosrs:HoboDyerProjection
Super-classes geosrs:EqualAreaProjectionc

Hufnagel III Projectionc # Classes

URI geosrs:HufnagelIIIProjection

Hufnagel II Projectionc # Classes

URI geosrs:HufnagelIIProjection

Hufnagel I Projectionc # Classes

URI geosrs:HufnagelIProjection

Hufnagel IV Projectionc # Classes

URI geosrs:HufnagelIVProjection

Hufnagel IX Projectionc # Classes

URI geosrs:HufnagelIXProjection

Hufnagel Projectionc # Classes

URI geosrs:HufnagelProjection
Super-classes geosrs:PseudoCylindricalProjectionc

Hufnagel VIII Projectionc # Classes

URI geosrs:HufnagelVIIIProjection

Hufnagel VII Projectionc # Classes

URI geosrs:HufnagelVIIProjection

Hufnagel VI Projectionc # Classes

URI geosrs:HufnagelVIProjection

Hufnagel IV Projectionc # Classes

URI geosrs:HufnagelVProjection

Hufnagel XII Projectionc # Classes

URI geosrs:HufnagelXIIProjection

Hufnagel XI Projectionc # Classes

URI geosrs:HufnagelXIProjection

Hufnagel X Projectionc # Classes

URI geosrs:HufnagelXProjection

Icosahedral Projectionc # Classes

URI geosrs:IcosahedralProjection
Super-classes geosrs:PolyhedralProjectionc

Interrupted Goode Homolosine Oceanic View Projectionc # Classes

URI geosrs:InterruptedGoodeHomolosineOceanicViewProjection

Interrupted Goode Homolosine Projectionc # Classes

URI geosrs:InterruptedGoodeHomolosineProjection

Interrupted Quartic Authalic Projectionc # Classes

URI geosrs:InterruptedQuarticAuthalicProjection
Super-classes geosrs:QuarticAuthalicProjectionc

James Azimuthal Projectionc # Classes

URI geosrs:JamesAzimuthalProjection
Super-classes geosrs:AzimuthalProjectionc

Kamenetskiy I Projectionc # Classes

URI geosrs:KamenetskiyIProjection
Super-classes geosrs:GallStereographicProjectionc

Karchenko Shabanova Projectionc # Classes

URI geosrs:KarchenkoShabanovaProjection
Super-classes geosrs:CylindricalProjectionc

Kavrayskiy 7 Projectionc # Classes

URI geosrs:Kavrayskiy7Projection
Super-classes geosrs:PseudoCylindricalProjectionc

Kiss Projectionc # Classes

URI geosrs:KissProjection
Super-classes geosrs:LenticularProjectionc

Krovak Projectionc # Classes

URI geosrs:Krovak
Super-classes geosrs:ConicalProjectionc

La Hire Projectionc # Classes

URI geosrs:LaHireProjection
Super-classes geosrs:PerspectiveProjectionc

Laborde Projectionc # Classes

URI geosrs:LabordeProjection
Super-classes geosrs:CylindricalProjectionc

Lagrange Projectionc # Classes

URI geosrs:LagrangeProjection
Super-classes geosrs:PolyconicProjectionc

Lambert Azimuthal Equal Area Projectionc # Classes

URI geosrs:LambertAzimuthalEqualArea
Description

The Lambert azimuthal equal-area projection is a particular mapping from a sphere to a disk. It accurately represents area in all regions of the sphere, but it does not accurately represent angles. (Ref: https://en.wikipedia.org/wiki/Lambert_azimuthal_equal-area_projection)

Super-classes geosrs:EqualAreaProjectionc

Lambert Conformal Conic Projectionc # Classes

URI geosrs:LambertConformalConicProjection
Super-classes geosrs:ConicalProjectionc

Lambert Cylindrical Equal Area Projectionc # Classes

URI geosrs:LambertCylindricalEqualAreaProjection
Description

A cylindrical projection where the cylinder touches the globe along the equator. The projection is performed so that the area of surface of the globe intercepted between the plane of the equator and its parallel plane going through some point P at the surface of the globe is equal to the area of the surface of the culinder intercepted between the same planes. (ref. George P. Kellaway, Map projections. Methuen &co Ltd. London, UK, 1970.)

Super-classes geosrs:CylindricalEqualAreac

Larrivee Projectionc # Classes

URI geosrs:LarriveeProjection
Super-classes geosrs:CompromiseProjectionc

Laskowski Projectionc # Classes

URI geosrs:LaskowskiProjection
Super-classes geosrs:PolyconicProjectionc

Lat Lon Projectionc # Classes

URI geosrs:LatLonProjection
Description

This is a simple non perspective cylindrical projection. The equator is projected as a straight line, of correct length, and accurately divided for the points of intersection with the meridians, which are projected as straight lines, also of correct lentgh and perpendicular to the equator. The meridians are correctly divided for the points of intersection with the parallels, which are therefore straight lines, parallel to the equator. (ref. George P. Kellaway, Map projections. Methuen &co Ltd. London, UK, 1970.)

Lee Projectionc # Classes

URI geosrs:LeeProjection
Super-classes geosrs:PolyhedralProjectionc

Lenticular Projectionc # Classes

URI geosrs:LenticularProjection
Sub-classes geosrs:FranculaXIVProjectionc
geosrs:FranculaVIIIProjectionc
geosrs:CiricIProjectionc
geosrs:FranculaXIIProjectionc
geosrs:DietrichKitadaProjectionc
geosrs:FranculaIXProjectionc
geosrs:CupolaProjectionc
geosrs:FranculaIIIProjectionc
geosrs:HamusoidalProjectionc
geosrs:KissProjectionc
geosrs:FranculaXIIIProjectionc
geosrs:DedistortProjectionc
geosrs:A4Projectionc
geosrs:FranculaVProjectionc
geosrs:FranculaIVProjectionc
geosrs:BriesemeisterProjectionc

Littrow Projectionc # Classes

URI geosrs:LittrowProjection
Super-classes geosrs:RetroazimuthalProjectionc

Lon Lat Projectionc # Classes

URI geosrs:LonLatProjection

Lorgna Projectionc # Classes

URI geosrs:LorgnaProjection
Super-classes geosrs:PerspectiveProjectionc

Lowry Projectionc # Classes

URI geosrs:LowryProjection
Super-classes geosrs:PerspectiveProjectionc

Loximuthal Projectionc # Classes

URI geosrs:LoximuthalProjection
Super-classes geosrs:PseudoCylindricalProjectionc

Maurer No73 Projectionc # Classes

URI geosrs:MaurerNo73Projection

Mayr Projectionc # Classes

URI geosrs:MayrProjection
Super-classes geosrs:PseudoCylindricalProjectionc

McBryde Thomas Flat Polar Parabolic Projectionc # Classes

URI geosrs:McBrydeThomasFlatPolarParabolicProjection
Super-classes geosrs:PseudoCylindricalProjectionc

McBryde Thomas Flat Polar Quartic Projectionc # Classes

URI geosrs:McBrydeThomasFlatPolarQuarticProjection
Super-classes geosrs:PseudoCylindricalProjectionc

McBryde Thomas Flat Polar Sinusoidal Projectionc # Classes

URI geosrs:McBrydeThomasFlatPolarSinusoidalProjection
Super-classes geosrs:PseudoCylindricalProjectionc

McBryde Thomas II Projectionc # Classes

URI geosrs:McBrydeThomasIIProjection
Super-classes geosrs:PseudoCylindricalProjectionc

McBryde Thomas I Projectionc # Classes

URI geosrs:McBrydeThomasIProjection
Super-classes geosrs:PseudoCylindricalProjectionc

Mercator Projectionc # Classes

URI geosrs:MercatorProjection
Description

All parallels of latitude are projected equal in length to the equator of the generating globle. The scale along the equator is therefore true, but away from the equator, the scale long the parallels is exaggerated. (ref. George P. Kellaway, Map projections. Methuen &co Ltd. London, UK, 1970.)

Super-classes geosrs:CylindricalProjectionc
Sub-classes geosrs:TransverseMercatorProjectionc

Miller Oblated Stereographic Projectionc # Classes

URI geosrs:MillerOblatedStereographicProjection
Super-classes geosrs:StereographicProjectionc

Miller Projectionc # Classes

URI geosrs:MillerProjection
Super-classes geosrs:CylindricalProjectionc

Minimum Error Projectionc # Classes

URI geosrs:MinimumErrorProjection
Sub-classes geosrs:AiryProjectionc

Mollweide Projectionc # Classes

URI geosrs:MollweideProjection
Super-classes geosrs:EqualAreaProjectionc
geosrs:PseudoCylindricalProjectionc

Mollweide Wagner Projectionc # Classes

URI geosrs:MollweideWagnerProjection

Murdoch III Projectionc # Classes

URI geosrs:MurdochIIIProjection
Super-classes geosrs:ConicalProjectionc

Murdoch II Projectionc # Classes

URI geosrs:MurdochIIProjection
Super-classes geosrs:ConicalProjectionc

Murdoch I Projectionc # Classes

URI geosrs:MurdochIProjection
Super-classes geosrs:ConicalProjectionc

Myrahedal Projectionc # Classes

URI geosrs:MyrahedalProjection
Super-classes geosrs:PolyhedralProjectionc

Natural Earth 2 Projectionc # Classes

URI geosrs:NaturalEarth2Projection
Super-classes geosrs:PseudoCylindricalProjectionc

Natural Earth Projectionc # Classes

URI geosrs:NaturalEarthProjection
Description

A pseudocylindrical map projection designed by Tom Patterson and introduced in 2008

Super-classes geosrs:PseudoCylindricalProjectionc

Nell-Hammer Projectionc # Classes

URI geosrs:NellHammerProjection
Super-classes geosrs:PseudoCylindricalProjectionc

Nell Projectionc # Classes

URI geosrs:NellProjection
Super-classes geosrs:PseudoCylindricalProjectionc

Nicolosi Globular Projectionc # Classes

URI geosrs:NicolosiGlobularProjection
Super-classes geosrs:PseudoConicalProjectionc

Nordic Projectionc # Classes

URI geosrs:NordicProjection
Super-classes geosrs:ObliqueProjectionc

Oblique Cylindrical Equal Area Projectionc # Classes

URI geosrs:ObliqueCylindricalEqualAreaProjection
Description

The Oblique Equal Area Cylindrical projection represents an orthographic projection of an ellipsoid onto a cylinder. It is similar to the Equal Area Cylindrical projection, except that the cylinder is wrapped around the ellipsoid so that it touches the surface along the great circle path chosen for the central line. (Ref: https://www.bluemarblegeo.com/knowledgebase/calculator/projections/Oblique_Equal_Area_Cylindrical.htm)

Super-classes geosrs:CylindricalEqualAreac

Oblique Mercator Projectionc # Classes

URI geosrs:ObliqueMercatorProjection
Description

The oblique Mercator projection is the oblique aspect of the standard (or Normal) Mercator projection. The cylinder axis is neither the polar axis nor in the plane of the equator. (Ref: https://en.wikipedia.org/wiki/Oblique_Mercator_projection)

Super-classes geosrs:ObliqueProjectionc

Oblique Plate Carree Projectionc # Classes

URI geosrs:ObliquePlateCarreeProjection
Description

Oblique Plate Carree Projection is the oblique aspect of the Plate Carree Projection: the cylinder axis is neither the polar axis nor in the equatorial plane. (Ref: https://www.mapthematics.com/ProjectionsList.php?Projection=55)

Super-classes geosrs:EquidistantProjectionc

Oblique Projectionc # Classes

URI geosrs:ObliqueProjection
Description

A planar or cylindrical projection whose point of tangency is neither on the equator nor at a pole. A conic projection whose axis does not line up with the polar axis of the globe. (Ref: https://support.esri.com/en-us/gis-dictionary/oblique-projection)

Sub-classes geosrs:ObliqueStereographicProjectionc
geosrs:ObliqueMercatorProjectionc
geosrs:NordicProjectionc

Oblique Stereographic Projectionc # Classes

URI geosrs:ObliqueStereographicProjection
Description

An azimuthal, conformal, polyconic (general) perspective projection that is visually similar to the ordinary Stereographic. (Ref: https://manifold.net/doc/mfd9/double_stereographic_projection.htm)

Super-classes geosrs:ObliqueProjectionc

Octant Projectionc # Classes

URI geosrs:OctantProjection
Super-classes geosrs:PolyhedralProjectionc

Ortelius Oval Projectionc # Classes

URI geosrs:OrteliusOvalProjection
Super-classes geosrs:PseudoCylindricalProjectionc

Orthographic Projectionc # Classes

URI geosrs:OrthographicProjection
Description

The point of origin is at infinity , and the plane of projection is tangential in any desired position ; so polar, equatorial and oblique case are all possible. The resulting projection is, as it were, a photographic view of a distant globe. (ref. George P. Kellaway, Map projections. Methuen &co Ltd. London, UK, 1970.)

Super-classes geosrs:PerspectiveProjectionc

Oval Projectionc # Classes

URI geosrs:OvalProjection

Patterson Cylindrical Projectionc # Classes

URI geosrs:PattersonCylindricalProjection
Super-classes geosrs:CylindricalProjectionc

Pavlov Projectionc # Classes

URI geosrs:PavlovProjection
Super-classes geosrs:CylindricalProjectionc

Peirce Quincuncial Projectionc # Classes

URI geosrs:PeirceQuincuncialProjection
Super-classes geosrs:ConformalProjectionc

Perspective Conic Projectionc # Classes

URI geosrs:PerspectiveConicProjection
Super-classes geosrs:PerspectiveProjectionc

Perspective Projectionc # Classes

URI geosrs:PerspectiveProjection
Sub-classes geosrs:GilbertTwoWorldPerspectiveProjectionc
geosrs:GeneralVerticalPerspectiveProjectionc
geosrs:CentralCylindricalProjectionc
geosrs:TiltedPerspectiveProjectionc
geosrs:LowryProjectionc
geosrs:PerspectiveConicProjectionc
geosrs:OrthographicProjectionc
geosrs:LorgnaProjectionc
geosrs:VerticalPerspectiveProjectionc
geosrs:LaHireProjectionc

Petermann Star Projectionc # Classes

URI geosrs:PetermannStarProjection
Super-classes geosrs:CompromiseProjectionc

Plate Carree Projectionc # Classes

URI geosrs:PlateCarreeProjection
Description

This is a simple non perspective cylindrical projection. The equator is projected as a straight line, of correct length, and accurately divided for the points of intersection with the meridians, which are projected as straight lines, also of correct lentgh and perpendicular to the equator. The meridians are correctly divided for the points of intersection with the parallels, which are therefore straight lines, parallel to the equator. (ref. George P. Kellaway, Map projections. Methuen &co Ltd. London, UK, 1970.)

Super-classes geosrs:EquidistantProjectionc

Pole Line Projectionc # Classes

URI geosrs:PoleLineProjection

Polyconic Projectionc # Classes

URI geosrs:PolyconicProjection
Sub-classes geosrs:GottWagnerProjectionc
geosrs:StabiusWernerIIIProjectionc
geosrs:StabiusWernerIProjectionc
geosrs:LagrangeProjectionc
geosrs:WagnerVIIIProjectionc
geosrs:WagnerIXProjectionc
geosrs:WagnerVIIProjectionc
geosrs:VanDerGrintenIVProjectionc
geosrs:VanDerGrintenIIProjectionc
geosrs:VanDerGrintenIProjectionc
geosrs:GinzburgIVProjectionc
geosrs:HillEucyclicProjectionc
geosrs:GinzburgIXProjectionc
geosrs:GinzburgVProjectionc
geosrs:GinzburgVIProjectionc
geosrs:LaskowskiProjectionc
geosrs:RectangularPolyconicProjectionc

Polyhedral Projectionc # Classes

URI geosrs:PolyhedralProjection
Sub-classes geosrs:CahillKeyesProjectionc
geosrs:QuadrilateralizedSphericalCubeProjectionc
geosrs:DymaxionProjectionc
geosrs:IcosahedralProjectionc
geosrs:WatermanButterflyProjectionc
geosrs:GnomonicIcosahedronProjectionc
geosrs:GnomonicCubedSphereProjectionc
geosrs:DodecahedralProjectionc
geosrs:GuyouProjectionc
geosrs:AuthaGraphProjectionc
geosrs:GnomonicButterflyProjectionc
geosrs:LeeProjectionc
geosrs:MyrahedalProjectionc
geosrs:OctantProjectionc
geosrs:CollignonButterflyProjectionc

Projectionc # Classes

URI geosrs:Projection
Super-classes geosrs:Conversionc

Pseudo-Azimuthal Projectionc # Classes

URI geosrs:PseudoAzimuthalProjection
Sub-classes geosrs:HammerProjectionc
geosrs:AitoffObliqueProjectionc
geosrs:WinkelTripelProjectionc
geosrs:AitoffProjectionc
geosrs:Strebe1995Projectionc

Pseudo-Conical Projectionc # Classes

URI geosrs:PseudoConicalProjection
Sub-classes geosrs:NicolosiGlobularProjectionc
geosrs:WernerProjectionc
geosrs:BottomleyProjectionc
geosrs:BonneProjectionc
geosrs:PtolemyIIProjectionc
geosrs:AmericanPolyconicProjectionc

Pseudo-Cylindrical Projectionc # Classes

URI geosrs:PseudoCylindricalProjection
Sub-classes geosrs:PutninsP6Projectionc
geosrs:HufnagelProjectionc
geosrs:WagnerVIProjectionc
geosrs:NellProjectionc
geosrs:Eckert4Projectionc
geosrs:PutninsP2Projectionc
geosrs:NaturalEarthProjectionc
geosrs:McBrydeThomasIIProjectionc
geosrs:OrteliusOvalProjectionc
geosrs:PutninsP1Projectionc
geosrs:WagnerIIIProjectionc
geosrs:PutninsP3Projectionc
geosrs:TheTimesProjectionc
geosrs:MayrProjectionc
geosrs:PutninsP5Projectionc
geosrs:WerenskioldIProjectionc
geosrs:QuarticAuthalicProjectionc
geosrs:LoximuthalProjectionc
geosrs:BromleyProjectionc
geosrs:WagnerIVProjectionc
geosrs:McBrydeThomasIProjectionc
geosrs:Kavrayskiy7Projectionc
geosrs:Eckert1Projectionc
geosrs:Eckert5Projectionc
geosrs:EqualEarthProjectionc
geosrs:BaranyiIVProjectionc
geosrs:PutninsP5'Projectionc
geosrs:HEALPixProjectionc
geosrs:McBrydeThomasFlatPolarQuarticProjectionc
geosrs:McBrydeThomasFlatPolarSinusoidalProjectionc
geosrs:Eckert6Projectionc
geosrs:CrasterParabolicProjectionc
geosrs:WagnerIProjectionc
geosrs:BaranyiIProjectionc
geosrs:FournierIIProjectionc
geosrs:FoucautSinusoidalProjectionc
geosrs:McBrydeThomasFlatPolarParabolicProjectionc
geosrs:ToblerHyperellipticalProjectionc
geosrs:SinusoidalProjectionc
geosrs:MollweideProjectionc
geosrs:Eckert3Projectionc
geosrs:GoodeHomolosineProjectionc
geosrs:ToblerG1Projectionc
geosrs:NaturalEarth2Projectionc
geosrs:PutninsP4'Projectionc
geosrs:CabotProjectionc
geosrs:BoggsEumorphicProjectionc
geosrs:FaheyProjectionc
geosrs:BaranyiIIIProjectionc
geosrs:FoucautProjectionc
geosrs:AtlantisProjectionc
geosrs:NellHammerProjectionc
geosrs:BaranyiIIProjectionc
geosrs:RobinsonProjectionc
geosrs:PutninsP6'Projectionc
geosrs:WagnerVProjectionc
geosrs:PutninsP3'Projectionc
geosrs:Eckert2Projectionc
geosrs:GinzburgVIIIProjectionc
geosrs:DeakinMinimumErrorProjectionc
geosrs:ApianIIProjectionc
geosrs:CollignonProjectionc
geosrs:HatanoAsymmetricalEqualAreaProjectionc
geosrs:WagnerIIProjectionc

Pseudo-Orthographic Projectionc # Classes

URI geosrs:PseudoOrthographicProjection

Ptolemy II Projectionc # Classes

URI geosrs:PtolemyIIProjection
Super-classes geosrs:PseudoConicalProjectionc

Ptolemy I Projectionc # Classes

URI geosrs:PtolemyIProjection
Super-classes geosrs:ArchaicProjectionc

Putnins P1 Projectionc # Classes

URI geosrs:PutninsP1Projection
Super-classes geosrs:PseudoCylindricalProjectionc

Putnins P2 Projectionc # Classes

URI geosrs:PutninsP2Projection
Super-classes geosrs:PseudoCylindricalProjectionc

PutninsP3'Projectionc # Classes

URI geosrs:PutninsP3'Projection
Super-classes geosrs:PseudoCylindricalProjectionc

Putnins P3 Projectionc # Classes

URI geosrs:PutninsP3Projection
Super-classes geosrs:PseudoCylindricalProjectionc

PutninsP4'Projectionc # Classes

URI geosrs:PutninsP4'Projection
Super-classes geosrs:PseudoCylindricalProjectionc

PutninsP5'Projectionc # Classes

URI geosrs:PutninsP5'Projection
Super-classes geosrs:PseudoCylindricalProjectionc

Putnins P5 Projectionc # Classes

URI geosrs:PutninsP5Projection
Super-classes geosrs:PseudoCylindricalProjectionc

PutninsP6'Projectionc # Classes

URI geosrs:PutninsP6'Projection
Super-classes geosrs:PseudoCylindricalProjectionc

Putnins P6 Projectionc # Classes

URI geosrs:PutninsP6Projection
Super-classes geosrs:PseudoCylindricalProjectionc

Quadrilateralized Spherical Cube Projectionc # Classes

URI geosrs:QuadrilateralizedSphericalCubeProjection
Super-classes geosrs:PolyhedralProjectionc

Quartic Authalic Projectionc # Classes

URI geosrs:QuarticAuthalicProjection
Super-classes geosrs:PseudoCylindricalProjectionc
Sub-classes geosrs:InterruptedQuarticAuthalicProjectionc

Rectangular Polyconic Projectionc # Classes

URI geosrs:RectangularPolyconicProjection
Super-classes geosrs:PolyconicProjectionc

Retroazimuthal Projectionc # Classes

URI geosrs:RetroazimuthalProjection
Sub-classes geosrs:CraigRetroazimuthalProjectionc
geosrs:LittrowProjectionc
geosrs:HammerRetroazimuthalProjectionc

Robinson Projectionc # Classes

URI geosrs:RobinsonProjection
Super-classes geosrs:PseudoCylindricalProjectionc

Roussilhe Projectionc # Classes

URI geosrs:RoussilheProjection
Super-classes geosrs:StereographicProjectionc

Schjerning I Projectionc # Classes

URI geosrs:SchjerningIProjection
Super-classes geosrs:ConicalProjectionc

Sinusoidal Projectionc # Classes

URI geosrs:SinusoidalProjection
Super-classes geosrs:PseudoCylindricalProjectionc

Smyth Equal Surface Projectionc # Classes

URI geosrs:SmythEqualSurfaceProjection
Super-classes geosrs:CylindricalEqualAreac

Space Oblique Mercator Projectionc # Classes

URI geosrs:SpaceObliqueMercatorProjection

Spilhaus Oceanic Projectionc # Classes

URI geosrs:SpilhausOceanicProjection
Super-classes geosrs:CompromiseProjectionc

Stabius Werner III Projectionc # Classes

URI geosrs:StabiusWernerIIIProjection
Super-classes geosrs:PolyconicProjectionc

Stabius Werner II Projectionc # Classes

URI geosrs:StabiusWernerIIProjection
Super-classes geosrs:BonneProjectionc

Stabius Werner I Projectionc # Classes

URI geosrs:StabiusWernerIProjection
Super-classes geosrs:PolyconicProjectionc

Stereographic Projectionc # Classes

URI geosrs:StereographicProjection
Description

The projection is made from the end of the diameter which is opposite the point of contact of the plane of projection ; so polar, equatorial and oblique case are all possible. (ref. George P. Kellaway, Map projections. Methuen &co Ltd. London, UK, 1970.)

Super-classes geosrs:ConformalProjectionc
Sub-classes geosrs:MillerOblatedStereographicProjectionc
geosrs:RoussilheProjectionc
geosrs:GallStereographicProjectionc

Strebe 1995 Projectionc # Classes

URI geosrs:Strebe1995Projection
Super-classes geosrs:PseudoAzimuthalProjectionc

The Times Projectionc # Classes

URI geosrs:TheTimesProjection
Super-classes geosrs:PseudoCylindricalProjectionc

Tilted Perspective Projectionc # Classes

URI geosrs:TiltedPerspectiveProjection
Super-classes geosrs:PerspectiveProjectionc

Tobler Cylindrical III Projectionc # Classes

URI geosrs:ToblerCylindricalIIProjection
Super-classes geosrs:CylindricalProjectionc

Tobler Cylindrical II Projectionc # Classes

URI geosrs:ToblerCylindricalIProjection
Super-classes geosrs:CylindricalProjectionc

Tobler G1 Projectionc # Classes

URI geosrs:ToblerG1Projection
Super-classes geosrs:PseudoCylindricalProjectionc

Tobler Hyperelliptical Projectionc # Classes

URI geosrs:ToblerHyperellipticalProjection
Super-classes geosrs:PseudoCylindricalProjectionc

Tobler World In A Square Projectionc # Classes

URI geosrs:ToblerWorldInASquareProjection
Super-classes geosrs:CylindricalEqualAreac

Transverse Cylindrical Equal Area Projectionc # Classes

URI geosrs:TransverseCylindricalEqualAreaProjection
Description

The transverse cylindrical equal-area is a transverse aspect of the cylindrical equal-area projection. (Ref: https://pro.arcgis.com/en/pro-app/latest/help/mapping/properties/transverse-cylindrical-equal-area.htm#:~:text=Sources-,Description,was%20presented%20by%20Johann%20H.)

Super-classes geosrs:CylindricalEqualAreac

Transverse Mercator Projectionc # Classes

URI geosrs:TransverseMercatorProjection
Description

A Mercator projection which is made transverse, that is the cylinder is regarded as touching the globe along the great circle formed by two selected opposite meridians. (ref. George P. Kellaway, Map projections. Methuen &co Ltd. London, UK, 1970.)

Super-classes geosrs:MercatorProjectionc
Sub-classes geosrs:GaussKruegerProjectionc

Trystan Edwards Projectionc # Classes

URI geosrs:TrystanEdwardsProjection
Super-classes geosrs:EqualAreaProjectionc

Two Point Equidistant Projectionc # Classes

URI geosrs:TwoPointEquidistantProjection
Super-classes geosrs:EquidistantProjectionc

Universal Transverse Mercator Projectionc # Classes

URI geosrs:UniversalTransverseMercatorProjection
Description

The Universal Transverse Mercator (UTM) is a map projection system for assigning coordinates to locations on the surface of the Earth. However, it differs from global latitude/longitude in that it divides earth into 60 zones and projects each to the plane as a basis for its coordinates. Specifying a location means specifying the zone and the x, y coordinate in that plane. The projection from spheroid to a UTM zone is some parameterization of the transverse Mercator projection. The parameters vary by nation or region or mapping system. (Ref: https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system)

Urmayev III Projectionc # Classes

URI geosrs:UrmayevIIIProjection
Super-classes geosrs:CylindricalProjectionc

Van Der Grinten III Projectionc # Classes

URI geosrs:VanDerGrintenIIIProjection
Super-classes geosrs:CompromiseProjectionc

Van Der Grinten II Projectionc # Classes

URI geosrs:VanDerGrintenIIProjection
Super-classes geosrs:PolyconicProjectionc

Van Der Grinten I Projectionc # Classes

URI geosrs:VanDerGrintenIProjection
Super-classes geosrs:PolyconicProjectionc

Van Der Grinten IV Projectionc # Classes

URI geosrs:VanDerGrintenIVProjection
Super-classes geosrs:PolyconicProjectionc

Vertical Perspective Projectionc # Classes

URI geosrs:VerticalPerspectiveProjection
Super-classes geosrs:PerspectiveProjectionc

Vitkovsky I Projectionc # Classes

URI geosrs:VitkovskyIProjection
Super-classes geosrs:ConicalProjectionc

Wagner III Projectionc # Classes

URI geosrs:WagnerIIIProjection
Super-classes geosrs:PseudoCylindricalProjectionc

Wagner II Projectionc # Classes

URI geosrs:WagnerIIProjection
Super-classes geosrs:PseudoCylindricalProjectionc

Wagner I Projectionc # Classes

URI geosrs:WagnerIProjection
Super-classes geosrs:PseudoCylindricalProjectionc

Wagner IV Projectionc # Classes

URI geosrs:WagnerIVProjection
Super-classes geosrs:PseudoCylindricalProjectionc

Wagner IX Projectionc # Classes

URI geosrs:WagnerIXProjection
Super-classes geosrs:PolyconicProjectionc

Wagner VIII Projectionc # Classes

URI geosrs:WagnerVIIIProjection
Super-classes geosrs:PolyconicProjectionc

Wagner VII Projectionc # Classes

URI geosrs:WagnerVIIProjection
Super-classes geosrs:PolyconicProjectionc

Wagner VI Projectionc # Classes

URI geosrs:WagnerVIProjection
Super-classes geosrs:PseudoCylindricalProjectionc

Wagner V Projectionc # Classes

URI geosrs:WagnerVProjection
Super-classes geosrs:PseudoCylindricalProjectionc

Waterman Butterfly Projectionc # Classes

URI geosrs:WatermanButterflyProjection
Super-classes geosrs:PolyhedralProjectionc

Web Mercator Projectionc # Classes

URI geosrs:WebMercatorProjection
Super-classes geosrs:CylindricalProjectionc

Werenskiold I Projectionc # Classes

URI geosrs:WerenskioldIProjection
Super-classes geosrs:PseudoCylindricalProjectionc

Werner Projectionc # Classes

URI geosrs:WernerProjection
Super-classes geosrs:PseudoConicalProjectionc

Wiechel Projectionc # Classes

URI geosrs:WiechelProjection
Super-classes geosrs:EqualAreaProjectionc

Winkel II Projectionc # Classes

URI geosrs:WinkelIIProjection
Super-classes geosrs:CompromiseProjectionc

Winkel I Projectionc # Classes

URI geosrs:WinkelIProjection
Super-classes geosrs:CompromiseProjectionc

Winkel Snyder Projectionc # Classes

URI geosrs:WinkelSnyderProjection
Super-classes geosrs:CompromiseProjectionc

Winkel Tripel Projectionc # Classes

URI geosrs:WinkelTripelProjection
Super-classes geosrs:PseudoAzimuthalProjectionc
Sub-classes geosrs:BartholomewProjectionc

Namespaces

default (geoprojection)
http://www.opengis.net/ont/srs/projection/
brick
https://brickschema.org/schema/Brick#
csvw
http://www.w3.org/ns/csvw#
dc
http://purl.org/dc/elements/1.1/
dcam
http://purl.org/dc/dcam/
dcat
http://www.w3.org/ns/dcat#
dcmitype
http://purl.org/dc/dcmitype/
dcterms
http://purl.org/dc/terms/
doap
http://usefulinc.com/ns/doap#
foaf
http://xmlns.com/foaf/0.1/
geo
http://www.opengis.net/ont/geosparql#
odrl
http://www.w3.org/ns/odrl/2/
org
http://www.w3.org/ns/org#
owl
http://www.w3.org/2002/07/owl#
prof
http://www.w3.org/ns/dx/prof/
prov
http://www.w3.org/ns/prov#
qb
http://purl.org/linked-data/cube#
rdf
http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs
http://www.w3.org/2000/01/rdf-schema#
sdo
https://schema.org/
sh
http://www.w3.org/ns/shacl#
skos
http://www.w3.org/2004/02/skos/core#
sosa
http://www.w3.org/ns/sosa/
ssn
http://www.w3.org/ns/ssn/
time
http://www.w3.org/2006/time#
vann
http://purl.org/vocab/vann/
void
http://rdfs.org/ns/void#
wgs
https://www.w3.org/2003/01/geo/wgs84_pos#
xsd
http://www.w3.org/2001/XMLSchema#

Legend

cClasses
opObject Properties
fpFunctional Properties
dpData Properties
apAnnotation Properties
pProperties
niNamed Individuals