Skip to content

annotate_schema

This module offers functionality to semantically enrich JSON Schemas by using x-jsonld-context annotations pointing to JSON-LD context documents, and also to build ready-to-use JSON-LD contexts from annotated JSON Schemas.

An example of an annotated JSON schema:

"$schema": https://json-schema.org/draft/2020-12/schema
"x-jsonld-context": observation.context.jsonld
title: Observation
type: object
required:
  - featureOfInterest
  - hasResult
  - resultTime
properties:
  featureOfInterest:
    type: string
  hasResult:
    type: object
  resultTime:
    type: string
    format: date-time
  observationCollection:
    type: string

... and its linked x-jsonld-context:

{
  "@context": {
    "@version": 1.1,
    "sosa": "http://www.w3.org/ns/sosa/",
    "featureOfInterest": "sosa:featureOfInterest",
    "hasResult": "sosa:hasResult",
    "resultTime": "sosa:resultTime"
  }
}

A SchemaAnnotator instance would then generate the following annotated JSON schema:

$schema: https://json-schema.org/draft/2020-12/schema
title: Observation
type: object
required:
- featureOfInterest
- hasResult
- observationTime
properties:
  featureOfInterest:
    'x-jsonld-id': http://www.w3.org/ns/sosa/featureOfInterest
    type: string
  hasResult:
    'x-jsonld-id': http://www.w3.org/ns/sosa/hasResult
    type: object
  observationCollection:
    type: string
  observationTime:
    'x-jsonld-id': http://www.w3.org/ns/sosa/resultTime
    format: date-time
    type: string

This schema can then be referenced from other entities that follow it (e.g., by using FG-JSON "definedby" links).

A client can then build a full JSON-LD @context (by using a ContextBuilder instance) and use it when parsing plain-JSON entities:

{
  "@context": {
    "featureOfInterest": "http://www.w3.org/ns/sosa/featureOfInterest",
    "hasResult": "http://www.w3.org/ns/sosa/hasResult",
    "observationTime": "http://www.w3.org/ns/sosa/resultTime"
  }
}

A JSON schema can be in YAML or JSON format (the annotated schema will use the same format as the input one).

JSON schemas need to follow some rules to work with this tool:

  • No nested properties are allowed. If they are needed, they should be put in a different schema, and a $ref to it used inside the appropriate property definition.
  • allOf/someOf root properties can be used to import other schemas (as long as they contain $refs to them).

This module can be run as a script, both for schema annotation and for context generation.

To annotate a schema (that already contains a x-jsonld-context to a JSON-LD context resource):

python -m ogc.na.annotate_schema --file path/to/schema.file.yaml

This will generate a new annotated directory replicating the layout of the input file path (/annotated/path/to/schema.file.yaml in this example).

JSON-LD contexts can be built by adding a -c flag:

python -m ogc.na.annotate_schema -c --file annotated/path/to/schema.file.yaml

The resulting context will be printed to the standard output.

ContextBuilder

Builds a JSON-LD context from a set of annotated JSON schemas.

Source code in ogc/na/annotate_schema.py
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
class ContextBuilder:
    """
    Builds a JSON-LD context from a set of annotated JSON schemas.
    """

    def __init__(self, location: Path | str,
                 compact: bool = True,
                 schema_resolver: SchemaResolver = None,
                 contents: dict | str | None = None,
                 version=1.1):
        """
        :param location: file or URL load the annotated schema from
        :param compact: whether to compact the resulting context (remove redundancies, compact CURIEs)
        :ref_mapper: an optional function to map JSON `$ref`'s before resolving them
        """
        self.context = {'@context': {}}
        self._parsed_schemas: dict[str | Path, dict] = {}

        self.schema_resolver = schema_resolver or SchemaResolver()

        self.location = location

        self.visited_properties: dict[str, str | None] = {}
        self._missed_properties: dict[str, Any] = {}  # Dict instead of set to keep order of insertion
        context = self._build_context(self.location, compact, contents=contents)
        if context:
            context['@version'] = version
        self.context = {'@context': context}

    def _build_context(self, schema_location: str | Path,
                       compact: bool = True,
                       contents: dict | str | None = None) -> dict:

        parsed = self._parsed_schemas.get(schema_location)
        if parsed:
            return parsed

        root_schema = self.schema_resolver.resolve_schema(schema_location, force_contents=contents)

        prefixes = {}

        own_context = {}

        if prefixes:
            own_context.update(prefixes)

        # store processed $defs and definitions to avoid parsing them twice
        processed_refs = set()

        def read_properties(subschema: dict, from_schema: ReferencedSchema,
                            onto_context: dict, schema_path: list[str]) -> dict | None:
            if schema_path:
                schema_path_str = '/' + '/'.join(schema_path)
            else:
                schema_path_str = ''
            if not isinstance(subschema, dict):
                return None
            if subschema.get('type', 'object') != 'object':
                return None
            for prop, prop_val in subschema.get('properties', {}).items():
                full_property_path = schema_path + [prop]
                full_property_path_str = f"{schema_path_str}/{prop}"
                self.visited_properties.setdefault(full_property_path_str, None)
                if from_schema == root_schema:
                    self._missed_properties.setdefault(full_property_path_str, True)
                if not isinstance(prop_val, dict):
                    continue
                prop_context = {'@context': {}}
                for term, term_val in prop_val.items():
                    if term == ANNOTATION_BASE:
                        prop_context.setdefault('@context', {})['@base'] = term_val
                    elif term.startswith(ANNOTATION_PREFIX) and term not in ANNOTATION_IGNORE_EXPAND:
                        if term == ANNOTATION_ID:
                            self.visited_properties[full_property_path_str] = term_val
                            self._missed_properties[full_property_path_str] = False
                        prop_context['@' + term[len(ANNOTATION_PREFIX):]] = term_val

                if isinstance(prop_context.get('@id'), str):
                    self.visited_properties[full_property_path_str] = prop_context['@id']
                    self._missed_properties[full_property_path_str] = False
                    if prop_context['@id'] in ('@nest', '@graph'):
                        merge_contexts(onto_context, process_subschema(prop_val, from_schema, full_property_path))
                    else:
                        merge_contexts(prop_context['@context'],
                                       process_subschema(prop_val, from_schema, full_property_path))
                    if prop not in onto_context or isinstance(onto_context[prop], str):
                        onto_context[prop] = prop_context
                    else:
                        merge_contexts(onto_context[prop], prop_context)
                else:
                    merge_contexts(onto_context, process_subschema(prop_val, from_schema, full_property_path))

        imported_prefixes: dict[str | Path, dict[str, str]] = {}
        imported_extra_terms: dict[str | Path, dict[str, str]] = {}

        cached_schema_contexts = {}

        def process_subschema(subschema: dict, from_schema: ReferencedSchema,
                              schema_path: list[str]) -> dict:

            onto_context = {}

            if not isinstance(subschema, dict):
                return {}

            for key in (ANNOTATION_BASE, ANNOTATION_VOCAB):
                top_level_value = subschema.get(key)
                if top_level_value:
                    onto_context[f"@{key[len(ANNOTATION_PREFIX):]}"] = top_level_value

            read_properties(subschema, from_schema, onto_context, schema_path)

            if '$ref' in subschema:
                ref = subschema['$ref']
                ref_path_str = f"{from_schema.location}{ref}"
                processed_refs.add(ref_path_str)
                referenced_schema = self.schema_resolver.resolve_schema(ref, from_schema)
                if referenced_schema:
                    ref_ctx = copy.deepcopy(cached_schema_contexts.get(ref_path_str))
                    if ref_ctx is None:
                        ref_ctx = process_subschema(referenced_schema.subschema, referenced_schema, schema_path)
                    merge_contexts(onto_context, ref_ctx)

            for i in ('allOf', 'anyOf', 'oneOf'):
                l = subschema.get(i)
                if isinstance(l, list):
                    for idx, sub_subschema in enumerate(l):
                        merge_contexts(onto_context, process_subschema(sub_subschema, from_schema, schema_path))

            for i in ('prefixItems', 'items', 'contains', 'then', 'else', 'additionalProperties'):
                l = subschema.get(i)
                if isinstance(l, dict):
                    merge_contexts(onto_context, process_subschema(l, from_schema, schema_path))

            for pp_k, pp in subschema.get('patternProperties', {}).items():
                if isinstance(pp, dict):
                    merge_contexts(onto_context, process_subschema(pp, from_schema, schema_path + [pp_k]))

            if ANNOTATION_EXTRA_TERMS in subschema:
                for extra_term, extra_term_context in subschema[ANNOTATION_EXTRA_TERMS].items():
                    if extra_term not in onto_context:
                        if isinstance(extra_term_context, dict):
                            extra_term_context = {f"@{k[len(ANNOTATION_PREFIX):]}": v
                                                  for k, v in extra_term_context.items()}
                        onto_context[extra_term] = extra_term_context

            if from_schema:
                current_ref = f"{from_schema.location}{from_schema.ref}"
                if current_ref not in imported_prefixes:
                    sub_prefixes = subschema.get(ANNOTATION_PREFIXES, {})
                    sub_prefixes |= from_schema.full_contents.get(ANNOTATION_PREFIXES, {})
                    if sub_prefixes:
                        imported_prefixes[current_ref] = sub_prefixes

                if current_ref not in imported_extra_terms:
                    sub_extra_terms = from_schema.full_contents.get(ANNOTATION_EXTRA_TERMS)
                    if sub_extra_terms:
                        imported_extra_terms[current_ref] = sub_extra_terms
            else:
                sub_prefixes = subschema.get(ANNOTATION_PREFIXES)
                if isinstance(sub_prefixes, dict):
                    prefixes.update({k: v for k, v in sub_prefixes.items() if k not in prefixes})

            cached_schema_contexts[f"{from_schema.location}#{from_schema.fragment}"] = onto_context
            return onto_context

        merge_contexts(own_context, process_subschema(root_schema.subschema, root_schema, []))

        for imported_et in imported_extra_terms.values():
            for term, v in imported_et.items():
                if term not in own_context:
                    if isinstance(v, dict):
                        v = {f"@{k[len(ANNOTATION_PREFIX):]}": val for k, val in v.items()}
                    own_context[term] = v

        for imported_prefix in imported_prefixes.values():
            for p, v in imported_prefix.items():
                if p not in prefixes:
                    prefixes[p] = v

        for prefix in list(prefixes.keys()):
            if prefix not in own_context:
                own_context[prefix] = {'@id': prefixes[prefix]}
            else:
                del prefixes[prefix]

        if compact:

            def compact_uri(uri: str) -> str:
                if uri in JSON_LD_KEYWORDS:
                    # JSON-LD keyword
                    return uri

                for pref, pref_uri in prefixes.items():
                    if uri.startswith(pref_uri) and len(pref_uri) < len(uri):
                        local_part = uri[len(pref_uri):]
                        if local_part.startswith('//'):
                            return uri
                        return f"{pref}:{local_part}"

                return uri

            def compact_branch(branch, context_stack=None) -> bool:
                child_context_stack = context_stack + [branch] if context_stack else [branch]
                terms = list(k for k in branch.keys() if k not in JSON_LD_KEYWORDS)

                changed = False
                for term in terms:
                    term_value = branch[term]

                    if isinstance(term_value, dict) and '@context' in term_value:
                        if not term_value['@context']:
                            del term_value['@context']
                            changed = True
                        else:
                            while True:
                                if not compact_branch(term_value['@context'], child_context_stack):
                                    break
                                else:
                                    changed = True

                    if context_stack:
                        for ctx in context_stack:
                            if term not in ctx:
                                continue
                            other = ctx[term]
                            if isinstance(term_value, str):
                                term_value = {'@id': term_value}
                            if isinstance(other, str):
                                other = {'@id': other}
                            if dict_contains(other, term_value):
                                del branch[term]
                                changed = True
                                break

                return changed

            def compact_uris(branch, context_stack=None):
                child_context_stack = context_stack + [branch] if context_stack else [branch]
                terms = list(k for k in branch.keys() if k not in JSON_LD_KEYWORDS)
                for term in terms:
                    term_value = branch.get(term)
                    if isinstance(term_value, str):
                        branch[term] = compact_uri(term_value)
                    elif isinstance(term_value, dict):
                        for k in CURIE_TERMS:
                            if k in term_value:
                                term_value[k] = compact_uri(term_value[k])
                        if len(term_value) == 1 and '@id' in term_value:
                            branch[term] = term_value['@id']
                        elif '@context' in term_value:
                            compact_uris(term_value['@context'], child_context_stack)

            while True:
                if not compact_branch(own_context):
                    break
            compact_uris(own_context)

        self._parsed_schemas[schema_location] = own_context
        return own_context

    @property
    def missed_properties(self):
        return [k for (k, v) in self._missed_properties.items() if v]

__init__(location, compact=True, schema_resolver=None, contents=None, version=1.1)

:ref_mapper: an optional function to map JSON $ref's before resolving them

Parameters:

Name Type Description Default
location Path | str

file or URL load the annotated schema from

required
compact bool

whether to compact the resulting context (remove redundancies, compact CURIEs)

True
Source code in ogc/na/annotate_schema.py
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
def __init__(self, location: Path | str,
             compact: bool = True,
             schema_resolver: SchemaResolver = None,
             contents: dict | str | None = None,
             version=1.1):
    """
    :param location: file or URL load the annotated schema from
    :param compact: whether to compact the resulting context (remove redundancies, compact CURIEs)
    :ref_mapper: an optional function to map JSON `$ref`'s before resolving them
    """
    self.context = {'@context': {}}
    self._parsed_schemas: dict[str | Path, dict] = {}

    self.schema_resolver = schema_resolver or SchemaResolver()

    self.location = location

    self.visited_properties: dict[str, str | None] = {}
    self._missed_properties: dict[str, Any] = {}  # Dict instead of set to keep order of insertion
    context = self._build_context(self.location, compact, contents=contents)
    if context:
        context['@version'] = version
    self.context = {'@context': context}

SchemaAnnotator

Builds a set of annotated JSON schemas from a collection of input schemas that have x-jsonld-contexts to JSON-LD context documents.

The results will be stored in the schemas property (a dictionary of schema-path-or-url -> AnnotatedSchema mappings).

Source code in ogc/na/annotate_schema.py
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
class SchemaAnnotator:
    """
    Builds a set of annotated JSON schemas from a collection of input schemas
    that have `x-jsonld-context`s to JSON-LD context documents.

    The results will be stored in the `schemas` property (a dictionary of
    schema-path-or-url -> AnnotatedSchema mappings).
    """

    def __init__(self, schema_resolver: SchemaResolver | None = None,
                 ref_mapper: Callable[[str, Any], str] | None = None,
                 ignore_existing: bool = False):
        """
        :schema_resolver: an optional SchemaResolver to resolve references
        :ref_mapper: an optional function to map JSON `$ref`'s before resolving them
        """
        self.schema_resolver = schema_resolver or SchemaResolver()
        self._ref_mapper = ref_mapper
        self.ignore_existing = ignore_existing

    def process_schema(self, location: Path | str | None,
                       default_context: str | Path | dict | None = None,
                       contents: dict | None = None) -> AnnotatedSchema | None:
        resolved_schema = self.schema_resolver.resolve_schema(location, force_contents=contents)
        schema = resolved_schema.subschema

        if all(x not in schema for x in ('schema', 'openapi')):
            validate_schema(schema)

        context_fn = schema.get(ANNOTATION_CONTEXT)
        schema.pop(ANNOTATION_CONTEXT, None)

        context = {}
        prefixes = {}

        if default_context and (context_fn != default_context
                                or not (isinstance(context_fn, Path)
                                        and isinstance(default_context, Path)
                                        and default_context.resolve() == context_fn.resolve())):
            # Only load the provided context if it's different from the schema-referenced one
            resolved_default_context = resolve_context(default_context)
            context, prefixes = attrgetter('context', 'prefixes')(resolved_default_context)

        if context_fn:
            context_fn, fragment = self.schema_resolver.resolve_ref(context_fn, resolved_schema)
            schema_context = resolve_context(context_fn)

            context = merge_contexts(context, schema_context.context)
            prefixes = prefixes | schema_context.prefixes

        updated_refs: set[int] = set()

        def find_prop_context(prop, context_stack) -> dict | None:
            vocab = UNDEFINED
            for ctx in reversed(context_stack):
                if vocab is UNDEFINED and '@vocab' in ctx:
                    vocab = ctx.get('@vocab')
                if prop in ctx:
                    prop_ctx = ctx[prop]
                    if isinstance(prop_ctx, str):
                        if vocab and ':' not in prop_ctx and prop_ctx not in JSON_LD_KEYWORDS:
                            prop_ctx = f"{vocab}{prop_ctx}"
                        return {'@id': prop_ctx}
                    elif '@id' not in prop_ctx and not vocab:
                        raise ValueError(f'Missing @id for property {prop} in context {json.dumps(ctx, indent=2)}')
                    else:
                        result = {k: v for k, v in prop_ctx.items() if k in JSON_LD_KEYWORDS}
                        if vocab:
                            prop_id = result.get('@id')
                            if not prop_id:
                                result['@id'] = f"{vocab}{prop}"
                            elif ':' not in prop_id and prop_id not in JSON_LD_KEYWORDS:
                                result['@id'] = f"{vocab}{prop_id}"
                        return result
                elif isinstance(vocab, str):
                    return {'@id': f"{ctx['@vocab']}{prop}"}

        def process_properties(obj: dict, context_stack: list[dict[str, Any]],
                               from_schema: ReferencedSchema, level) -> Iterable[str]:

            properties: dict[str, dict] = obj.get('properties') if obj else None
            if not properties:
                return ()
            if not isinstance(properties, dict):
                raise ValueError('"properties" must be a dictionary')

            used_terms = set()
            for prop in list(properties.keys()):
                if prop in JSON_LD_KEYWORDS:
                    # skip JSON-LD keywords
                    continue
                prop_value = properties[prop]

                if not isinstance(prop_value, dict):
                    continue

                for key in list(prop_value.keys()):
                    if self.ignore_existing and key.startswith(ANNOTATION_PREFIX):
                        prop_value.pop(key, None)

                prop_ctx = find_prop_context(prop, context_stack)
                if prop_ctx:
                    used_terms.add(prop)
                    prop_schema_ctx = {f"{ANNOTATION_PREFIX}{k[1:]}": v
                                       for k, v in prop_ctx.items()
                                       if k in JSON_LD_KEYWORDS and k != '@context'}
                    prop_ctx_base = prop_ctx.get('@context', {}).get('@base')
                    if prop_ctx_base:
                        prop_schema_ctx[ANNOTATION_BASE] = prop_ctx_base

                    if not prop_value or prop_value is True:
                        properties[prop] = prop_schema_ctx
                    else:
                        for k, v in prop_schema_ctx.items():
                            prop_value.setdefault(k, v)

                if prop_ctx and '@context' in prop_ctx:
                    prop_context_stack = context_stack + [prop_ctx['@context']]
                else:
                    prop_context_stack = context_stack
                used_terms.update(process_subschema(prop_value, prop_context_stack, from_schema, level))

            return used_terms

        def process_subschema(subschema, context_stack, from_schema: ReferencedSchema, level=1) -> Iterable[str]:
            if not subschema or not isinstance(subschema, dict):
                return ()

            used_terms = set()

            # Annotate definitions and $defs - can later be overridden if referenced from a different path
            for p in ('definitions', '$defs'):
                defs = subschema.get(p)
                if defs and isinstance(defs, dict):
                    for entry in defs.values():
                        used_terms.update(process_subschema(entry, context_stack, from_schema, level + 1))

            if '$ref' in subschema and id(subschema) not in updated_refs:
                if self._ref_mapper:
                    subschema['$ref'] = self._ref_mapper(subschema['$ref'], subschema)
                if subschema['$ref'].startswith('#/') or subschema['$ref'].startswith(f"{from_schema.location}#/"):
                    target_schema = self.schema_resolver.resolve_schema(subschema['$ref'], from_schema)
                    if target_schema:
                        used_terms.update(process_subschema(target_schema.subschema, context_stack,
                                                            target_schema, level + 1))
                updated_refs.add(id(subschema))

            # Annotate oneOf, allOf, anyOf
            for p in ('oneOf', 'allOf', 'anyOf'):
                collection = subschema.get(p)
                if collection and isinstance(collection, list):
                    for entry in collection:
                        used_terms.update(process_subschema(entry, context_stack, from_schema, level + 1))

            for p in ('then', 'else', 'additionalProperties'):
                branch = subschema.get(p)
                if branch and isinstance(branch, dict):
                    used_terms.update(process_subschema(branch, context_stack, from_schema, level))

            for pp in subschema.get('patternProperties', {}).values():
                if pp and isinstance(pp, dict):
                    used_terms.update(process_subschema(pp, context_stack, from_schema, level + 1))

            # Annotate main schema
            schema_type = subschema.get('type')
            if not schema_type and 'properties' in subschema:
                schema_type = 'object'

            if schema_type == 'object':
                used_terms.update(process_properties(subschema, context_stack, from_schema, level + 1))
            elif schema_type == 'array':
                for k in ('prefixItems', 'items', 'contains'):
                    used_terms.update(process_subschema(subschema.get(k), context_stack, from_schema, level + 1))

            # Get prefixes
            for p, bu in subschema.get(ANNOTATION_PREFIXES, {}).items():
                if p not in prefixes:
                    prefixes[p] = bu

            if len(context_stack) == level and context_stack[-1]:
                extra_terms = {}
                for k, v in context_stack[-1].items():
                    if k not in JSON_LD_KEYWORDS and k not in prefixes and k not in used_terms:
                        if isinstance(v, dict):
                            if len(v) == 1 and '@id' in v:
                                v = v['@id']
                            else:
                                v = {f"{ANNOTATION_PREFIX}{vk[1:]}": vv
                                     for vk, vv in v.items()
                                     if vk in JSON_LD_KEYWORDS}
                        if isinstance(v, str) and v[-1] in ('#', '/', ':'):
                            prefixes[k] = v
                        else:
                            extra_terms[k] = v
                if extra_terms:
                    subschema.setdefault(ANNOTATION_EXTRA_TERMS, {}).update(extra_terms)

            return used_terms

        process_subschema(schema, [context], resolved_schema)

        for key in ('@base', '@vocab'):
            if context.get(key):
                schema[f"{ANNOTATION_PREFIX}{key[1:]}"] = context[key]

        if prefixes:
            schema[ANNOTATION_PREFIXES] = prefixes

        return AnnotatedSchema(
            source=location,
            is_json=resolved_schema.is_json,
            schema=schema
        )

__init__(schema_resolver=None, ref_mapper=None, ignore_existing=False)

:schema_resolver: an optional SchemaResolver to resolve references :ref_mapper: an optional function to map JSON $ref's before resolving them

Source code in ogc/na/annotate_schema.py
497
498
499
500
501
502
503
504
505
506
def __init__(self, schema_resolver: SchemaResolver | None = None,
             ref_mapper: Callable[[str, Any], str] | None = None,
             ignore_existing: bool = False):
    """
    :schema_resolver: an optional SchemaResolver to resolve references
    :ref_mapper: an optional function to map JSON `$ref`'s before resolving them
    """
    self.schema_resolver = schema_resolver or SchemaResolver()
    self._ref_mapper = ref_mapper
    self.ignore_existing = ignore_existing

SchemaResolver

Source code in ogc/na/annotate_schema.py
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
class SchemaResolver:

    def __init__(self, working_directory=Path()):
        self.working_directory = working_directory.resolve()
        self._schema_cache: dict[str | Path, Any] = {}

    @staticmethod
    def _get_branch(schema: dict, ref: str, anchors: dict[str, Any] = None):
        ref = re.sub('^#', '', ref)
        if anchors and ref in anchors:
            return anchors[ref]
        return jsonpointer.resolve_pointer(schema, ref)

    @staticmethod
    def _find_anchors(schema: dict) -> dict[str, Any]:
        anchors = {}

        pending = deque((schema,))
        while pending:
            current = pending.popleft()
            if isinstance(current, dict):
                if '$anchor' in current:
                    anchors[current['$anchor']] = current
                pending.extend(current.values())
            elif isinstance(current, list):
                pending.extend(current)

        return anchors

    def load_contents(self, s: str | Path) -> tuple[dict, bool]:
        """
        Load the contents of a schema. Can be overriden by subclasses to alter the loading process.
        """
        contents = self._schema_cache.get(s)
        if contents is None:
            try:
                contents = read_contents(s)[0]
                self._schema_cache[s] = contents
            except Exception as e:
                raise SchemaLoadError(f'Error loading schema from schema source "{s}"') from e
        return load_json_yaml(contents)

    def resolve_ref(self, ref: str | Path, from_schema: ReferencedSchema | None = None) -> tuple[Path | str, str]:
        location = ref
        fragment = None
        if isinstance(location, str):
            s = location.split('#', 1)
            fragment = s[1] if len(s) > 1 else None
            location = s[0]
            if not location:
                return location, fragment
            if not is_url(location):
                location = Path(location)

        if isinstance(location, Path):
            if location.is_absolute():
                location = location.resolve()
            elif not from_schema:
                location = self.working_directory.joinpath(location).resolve()
            elif from_schema.full_contents.get('$id'):
                location = urljoin(from_schema.full_contents['$id'], str(location))
            elif not isinstance(from_schema.location, Path):
                location = urljoin(from_schema.location, str(location))
            else:
                location = from_schema.location.resolve().parent.joinpath(location).resolve()

        if location is None:
            raise ValueError(f'Unexpected ref type {type(ref).__name__}')

        return location, fragment

    def resolve_schema(self, ref: str | Path, from_schema: ReferencedSchema | None = None,
                       force_contents: dict | str | None = None) -> ReferencedSchema | None:
        chain = from_schema.chain + [from_schema] if from_schema else []
        try:
            schema_source, fragment = self.resolve_ref(ref, from_schema)
            if from_schema:
                for ancestor in from_schema.chain:
                    if (not schema_source or ancestor.location == schema_source) and ancestor.fragment == fragment:
                        return None

            if not schema_source:
                if not from_schema:
                    raise ValueError('Local ref provided without an anchor: ' + ref)
                return ReferencedSchema(location=from_schema.location,
                                        fragment=ref[1:],
                                        subschema=SchemaResolver._get_branch(from_schema.full_contents, ref,
                                                                             from_schema.anchors),
                                        full_contents=from_schema.full_contents,
                                        chain=chain,
                                        ref=ref,
                                        is_json=from_schema.is_json,
                                        anchors=from_schema.anchors)

            if force_contents:
                is_json = False
                if isinstance(force_contents, str):
                    try:
                        contents = load_yaml(content=force_contents)
                    except Exception as e:
                        raise SchemaLoadError('Error loading schema from string contents') from e
                else:
                    contents = force_contents
            else:
                contents, is_json = self.load_contents(schema_source)
            anchors = SchemaResolver._find_anchors(contents)
            if fragment:
                return ReferencedSchema(location=schema_source, fragment=fragment,
                                        subschema=SchemaResolver._get_branch(contents, fragment, anchors),
                                        full_contents=contents,
                                        chain=chain,
                                        ref=ref,
                                        is_json=is_json,
                                        anchors=anchors)
            else:
                return ReferencedSchema(location=schema_source,
                                        subschema=contents,
                                        full_contents=contents,
                                        chain=chain,
                                        ref=ref,
                                        is_json=is_json,
                                        anchors=anchors)
        except Exception as e:
            f = f" from {from_schema.location}" if from_schema else ''
            raise IOError(f"Error resolving reference {ref}{f}") from e

load_contents(s)

Load the contents of a schema. Can be overriden by subclasses to alter the loading process.

Source code in ogc/na/annotate_schema.py
219
220
221
222
223
224
225
226
227
228
229
230
def load_contents(self, s: str | Path) -> tuple[dict, bool]:
    """
    Load the contents of a schema. Can be overriden by subclasses to alter the loading process.
    """
    contents = self._schema_cache.get(s)
    if contents is None:
        try:
            contents = read_contents(s)[0]
            self._schema_cache[s] = contents
        except Exception as e:
            raise SchemaLoadError(f'Error loading schema from schema source "{s}"') from e
    return load_json_yaml(contents)

dump_annotated_schema(schema, subdir='annotated', root_dir=None, output_fn_transform=None)

Creates a "mirror" directory (named annotated by default) with the resulting schemas annotated by a SchemaAnnotator.

Parameters:

Name Type Description Default
schema AnnotatedSchema

the AnnotatedSchema to dump

required
subdir Path | str

a name for the mirror directory

'annotated'
root_dir Path | str | None

root directory for computing relative paths to schemas

None
output_fn_transform Callable[[Path], Path] | None

optional callable to transform the output path

None
Source code in ogc/na/annotate_schema.py
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
def dump_annotated_schema(schema: AnnotatedSchema, subdir: Path | str = 'annotated',
                          root_dir: Path | str | None = None,
                          output_fn_transform: Callable[[Path], Path] | None = None) -> None:
    """
    Creates a "mirror" directory (named `annotated` by default) with the resulting
    schemas annotated by a `SchemaAnnotator`.

    :param schema: the `AnnotatedSchema` to dump
    :param subdir: a name for the mirror directory
    :param root_dir: root directory for computing relative paths to schemas
    :param output_fn_transform: optional callable to transform the output path
    """
    wd = (Path(root_dir) if root_dir else Path()).resolve()
    subdir = subdir if isinstance(subdir, Path) else Path(subdir)
    path = schema.source
    if isinstance(path, Path):
        output_fn = path.resolve().relative_to(wd)
    else:
        parsed = urlparse(str(path))
        output_fn = parsed.path

    output_fn = subdir / output_fn
    if output_fn_transform:
        output_fn = output_fn_transform(output_fn)
    output_fn.parent.mkdir(parents=True, exist_ok=True)

    if schema.is_json:
        logger.info(f'Writing output schema to {output_fn}')
        with open(output_fn, 'w') as f:
            json.dump(schema.schema, f, indent=2)
    else:
        dump_yaml(schema.schema, output_fn)

load_json_yaml(contents)

Loads either a JSON or a YAML file

Parameters:

Name Type Description Default
contents str | bytes

contents to load

required

Returns:

Type Description
tuple[Any, bool]

a tuple with the loaded document, and whether the detected format was JSON (True) or YAML (False)

Source code in ogc/na/annotate_schema.py
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
def load_json_yaml(contents: str | bytes) -> tuple[Any, bool]:
    """
    Loads either a JSON or a YAML file

    :param contents: contents to load
    :return: a tuple with the loaded document, and whether the detected format was JSON (True) or YAML (False)
    """
    try:
        obj = json.loads(contents)
        is_json = True
    except ValueError:
        obj = load_yaml(content=contents)
        is_json = False

    return obj, is_json

read_contents(location)

Reads contents from a file or URL

@param location: filename or URL to load @return: a tuple with the loaded data (str or bytes) and the base URL, if any

Source code in ogc/na/annotate_schema.py
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
def read_contents(location: Path | str | None) -> tuple[AnyStr | bytes, str]:
    """
    Reads contents from a file or URL

    @param location: filename or URL to load
    @return: a tuple with the loaded data (str or bytes) and the base URL, if any
    """
    if not location:
        raise ValueError('A location must be provided')

    if isinstance(location, Path) or not is_url(location):
        fn = Path(location)
        base_url = None
        logger.info('Reading file contents from %s', fn)
        with open(fn) as f:
            contents = f.read()
    else:
        base_url = location
        r = requests_session.get(location)
        r.raise_for_status()
        contents = r.content

    return contents, base_url

resolve_ref(ref, fn_from=None, url_from=None, base_url=None)

Resolves a $ref

Parameters:

Name Type Description Default
ref str

the $ref to resolve

required
fn_from str | Path | None

original name of the file containing the $ref (when it is a file)

None
url_from str | None

original URL of the document containing the $ref (when it is a URL)

None
base_url str | None

base URL of the document containing the $ref (if any)

None

Returns:

Type Description
tuple[Path | None, str | None]

a tuple of (Path, str) with only one None entry (the Path if the resolved reference is a file, or the str if it is a URL)

Source code in ogc/na/annotate_schema.py
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
def resolve_ref(ref: str, fn_from: str | Path | None = None, url_from: str | None = None,
                base_url: str | None = None) -> tuple[Path | None, str | None]:
    """
    Resolves a `$ref`
    :param ref: the `$ref` to resolve
    :param fn_from: original name of the file containing the `$ref` (when it is a file)
    :param url_from: original URL of the document containing the `$ref` (when it is a URL)
    :param base_url: base URL of the document containing the `$ref` (if any)
    :return: a tuple of (Path, str) with only one None entry (the Path if the resolved
    reference is a file, or the str if it is a URL)
    """

    base_url = base_url or url_from
    if is_url(ref):
        return None, ref
    elif base_url:
        return None, urljoin(base_url, ref)
    else:
        fn_from = fn_from if isinstance(fn_from, Path) else Path(fn_from)
        ref = (fn_from.resolve().parent / ref).resolve()
        return ref, None